Summary
Strapdown inertial navigation systems are sensitive to the quality of the data provided by the accelerometer and gyroscope. Low-grade IMUs in handheld smart-devices pose a problem for inertial odometry on these devices. We propose a scheme for constraining the inertial odometry problem by complementing non-linear state estimation by a CNN-based deep-learning model for inferring the momentary speed based on a window of IMU samples.
This repository provides the codes for replicationg the speed regression setup in [1]. Please, if you use this code/data, please cite the original paper presenting it.
Codes
Referencing
[1] Santiago Cortés, Arno Solin, and Juho Kannala, “Deep Learning Based Speed Estimation for Constraining Strapdown Inertial Navigation on Smartphones”, IEEE International Workshop on Machine Learning for Signal Processing (MLSP), Aalborg, Denmark, 2018. [arXiv]