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INTRODUCTION

I Novel visual-inertial odometry method
I Information fusion for the low-cost IMU

sensors (gyroscope and accelerometer)
and the monocular camera in a
smartphone

I Problem: Previous methods
visual-heavy and thus sensitive to the
visual environment

I Novelty: Takes into account all the
cross-terms in the visual updates

I Thus propagating the inter-connected
uncertainties throughout the model

I Robustness against occlusion and
feature-poor environments

I Stronger coupling between the inertial
and visual data
→ “Inertial-visual odometry”

INFORMATION FUSION

I The IMU data drives the dynamics
I Complemeted by visual updates
I Formulated as a statistical information

fusion problem
I Non-linear filtering by an extended

Kalman filter (EKF)
I Exact up to the first-order linearizations

in the EKF

IMU PROPAGATION MODEL

I We leverage on recent advances in
inertial navigation on smartphones [2]

I For each time step tk , the state holds
the position pk , velocity vk , orientation
qk , and sensor biases
xk = (pk ,qk ,vk ,b

a
k ,b

ω
k ,T

a
k ,π

(1),π(2), . . . ,π(na))

I A trail of past poses π(j) to be coupled
by the visual updates

I IMU propagation is done with the
mechanization equations(

pk
vk
qk

)
=

(
pk−1 + vk−1∆tk

vk−1 + [qk(ãk + εa
k)q?

k − g]∆tk
Ω[(ω̃k + εωk )∆tk ]qk−1

)

I Double-integrating the accelerations ak
corrected by the gyroscope rotations ωk

Algorithm 1: Outline of the PIVO method.In this paper we present a probabilistic approach for fus-
ing information from consumer grade inertial sensors (i.e.
3-axis accelerometer and gyroscope) and a monocular video
camera for accurate low-drift odometry. This is practically
the most interesting hardware setup as most modern smart-
phones contain a monocular video camera and an IMU. De-
spite the wide application potential of such hardware plat-
form, there are not many previous works which demon-
strate visual-inertial odometry using standard smartphone
sensors. This is most likely due to the relatively low qual-
ity of low-cost IMUs which makes inertial navigation chal-
lenging. The most notable papers covering the smartphone
use case are [18, 21, 34]. However, all these previous ap-
proaches are either visual-only or visual-heavy in the sense
that tracking breaks if there is complete occlusion of cam-
era for short periods of time. This is the case also with the
visual-inertial odometry of the Google Tango device.

3. Inertial-visual information fusion
Consider a device with a monocular camera, an IMU

with 3-axis gyroscope/accelerometer, and known camera-
to-IMU translational and rotational offsets—a characteriza-
tion that matches modern day smartphones. In the follow-
ing, we formulate the PIVO approach for fusing information
from these data sources such that we maintain all dependen-
cies between uncertain information sources—up to the lin-
earization error from the non-linear filtering approach. The
outline of the PIVO method is summarized in Algorithm 1.

3.1. Non-linear filtering for information fusion

In the following, we set the notation for the non-linear
filtering approach (see [29] for an overview) for information
fusion in the paper. We are concerned with non-linear state-
space equation models of form

xk = fk(xk−1, εk), (1)
yk = hk(xk) + γk, (2)

where xk ∈ Rn is the state at time step tk, k = 1, 2, . . .,
yk ∈ Rm is a measurement, εk ∼ N(0,Qk) is the Gaus-
sian process noise, and γk ∼ N(0,Rk) is the Gaussian
measurement noise. The dynamics and measurements are
specified in terms of the dynamical model function fk(·, ·)
and the measurement model function hk(·), both of which
can depend on the time step k. The extended Kalman fil-
ter (EKF, [1, 15, 29]) provides a means of approximat-
ing the state distributions p(xk | y1:k) with Gaussians:
p(xk | y1:k) ' N(xk |mk|k,Pk|k).

The linearizations inside the extended Kalman filter
cause some errors in the estimation. Most notably the esti-
mation scheme does not preserve the norm of the orientation
quaternions. Therefore after each update an extra quater-
nion normalization step is added to the estimation scheme.

Algorithm 1: Outline of the PIVO method.
Initialize the state mean and covariance
foreach IMU sample pair (ak,ωk) do

Propagate the model with the IMU sample see Sec. 3.2
Perform the EKF prediction step
if new frame is available then

track visual features
foreach feature track do

Jointly triangulate feature using poses in state and
calculate the visual update proposal see Sec. 3.4

if proposal passes check then
Perform the EKF visual update

Update the trail of augmented poses see Sec. 3.3

In case either the dynamical (1) or measurement
model (2) is linear (i.e. fk(x, ε) = Ak x + ε or hk(x) =
Hk x, respectively), the prediction/update steps reduce to
the closed-form solutions given by the conventional Kalman
filter.

3.2. IMU propagation model

The state variables of the system hold the information of
the current system state and a fixed-length window of past
poses in the IMU coordinate frame:

xk = (pk,qk,vk,b
a
k,b

ω
k ,T

a
k,π

(1),π(2), . . . ,π(na)),
(3)

where pk ∈ R3 is the device position, vk ∈ R3 the velocity,
and qk ∈ R4 the orientation quaternion at time step tk.
Additive accelerometer and gyroscope biases are denoted
by ba

k ∈ R3 and bω
k ∈ R3, respectively. Ta

k ∈ R3×3 holds
the multiplicative accelerometer bias. The past device poses
are kept track of by augmenting a fixed-length trail of poses,
{π(i)}na

i=1, where π(i) = (pi,qi), in the state.
Contrary to many previous visual-inertial methods, we

seek to define the propagation method directly in discrete-
time following Solin et al. [32]. The benefits are that the
derivatives required for the EKF prediction are available in
closed-form, no separate ODE solver iteration is required,
and possible pitfalls (see, e.g., [30]) related to the traditional
continuous-discrete formulation [15] can be avoided.

The IMU propagation model is given by the mechaniza-
tion equations



pk

vk

qk


 =




pk−1 + vk−1∆tk
vk−1 + [qk(ãk + εak)q?

k − g]∆tk
Ω[(ω̃k + εωk )∆tk]qk−1


 , (4)

where the time step length is given by ∆tk = tk− tk−1, the
acceleration input is ãk ∈ R3 and the gyroscope input by
ω̃k ∈ R3. Gravity g is a constant. The quaternion rotation
is denoted by qk[·]q?

k, and the quaternion update is given
by Ω : R3 → R4×4 (see, e.g., [36]). The process noises
associated with the IMU data are treated as i.i.d. Gaussian
noise εak ∼ N(0,Σa∆tk) and εωk ∼ N(0,Σω∆tk).

VISUAL UPDATES

I Features tracked by Good features to
track and a pyramidal Lucas–Kanade
tracker

I Visual update performed per tracked
feature

I The observed data are the pixel
coordinates of the feature trail

I The 3D location of the feature point is
triangulated by Gauss–Newton
minimization of reprojection error

I The feature location couples the
augmented poses in the state

I The entire update procedure
differentiated (including the
Gauss–Newton iteration) for the EKF
update

I This way the 3D position of the feature
is integrated out in the update

I Outlier rejection by innovation tests

Figure 2: Test setup for comparing the Tango
device and an iPhone.

I We perform comparisons of the visual
update model to
(i) brute-force Monte Carlo simulation
(ii) the MSCKF method [3]

I Comparison examples in Figure 3

for pixel pairs yi = (ui, vi) in y). In our formulation the
feature global coordinate p

(j)
∗ ∈ R3 will be integrated out

in the final model, which differs from previous approaches.
We, however, write out the derivation of the model by in-
cluding the estimation of p

(j)
∗ .

h(j,i)(x) = g
(
R(Cq(i)) (p

(j)
∗ − Cp(i))

)
, (8)

where the rotation and translation in the global frame corre-
sponds to the camera extrinsics calculated from the device
pose and known rotational and translational offsets between
IMU and camera coordinate frames (denoted by the super-
script ‘C’ in Eq. 8). The camera projection is modeled by
a standard perspective model g : R3 → R2 with radial and
tangential distortion [10] and calibrated off-line.

To estimate the position p
(j)
∗ of a tracked feature

we employ a similar approach as in [24], where the
following minimization problem is set up: θ∗ =
arg minθ

∑m
i=1 ‖ϕi(θ)‖, where we use the inverse depth

parametrization, θ = 1/pz(px, py, 1), to avoid local min-
ima and improve numerical stability [23]. The target func-
tionϕi : R3 → R2 can be defined as follows on a per frame
basis:

ϕi(θ) = ỹi − h−1i,3

(
hi,1 hi,2

)T
, (9)

hi = Ci

(
θ1 θ2 1

)T
+ θ3 ti, (10)

Ci = R(Cq(i)) RT(Cq(1)), (11)

ti = R(Cq(i))
(
p(1) − p(i)

)
, (12)

where feature pixel coordinates ỹi are undistorted from
yi. For solving the minimization problem a Gauss–Newton
minimization scheme is employed:

θ(s+1) = θ(s) − (JT
ϕ Jϕ)T JT

ϕϕ(θ(s)), (13)

where Jϕ is the Jacobian of ϕ. The iteration is initialized
by an intersection estimate θ(0) calculated just from the first
and last pose.

The beef of this section is that in order to do a precise
EKF update with measurement model (7) the entire proce-
dure described after Equation (7) needs to be differentiated
in order to derive the closed-form Jacobian Hx : Rn →
R2m×n. This includes differentiating the entire Gauss–
Newton scheme iterations with respect to all state variables.

The effect of taking into account all the cross-derivatives
is illustrated in Figure 2b. The figure illustrates how the vi-
sual update for a three frame long feature track shows in the
extended Kalman filter, where the estimated feature loca-
tion must be summarized into a multivariate Gaussian dis-
tribution. The black dots depict the true distribution calcu-
lated by a Monte Carlo scheme, the red patch show the 95%
confidence ellipses for the MSCKF visual update, and the
blue patch the 95% confidence ellipses for the PIVO visual
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(b) Comparison between PIVO and MSCKF visual update model

Figure 2: (a) A visual feature observed by a trail of camera
poses with associated uncertainties. In (b) the black dots are
the ‘true’ distributions for the visual update model. The red
patch shows shape of the Gaussian approximation used by
the MSCKF visual update, and blue shows the shape of the
approximation used by PIVO.

update. The MSCKF approximation is coarse, but the ap-
proximate density covers the true one with high certainty.
Taking all cross-correlation into account and successfully
accounting for the sensitivity of the estimated feature lo-
cation, makes the PIVO update model more accurate. The
directions of the correlations (tilt of the distributions) are
interpreted right. The nature of the local linearization can
still keep the mean off.

When proposing a visual update, for robustness against
outlier tracks, we use the standard chi-squared innovation
test approach (see, e.g., [1]), which takes into account both
the predicted visual track and the estimate uncertainty.

4. Results
In the following we present a number of experiments

which aim to demonstrate the proposed method to be com-

Figure 3: A visual feature observed by a trail
of camera poses with associated uncertainties.
The black dots are the ‘true’ distributions for
the visual update model. The red patch shows
shape of the Gaussian approximation used by
the MSCKF [3] visual update, and blue shows
the shape of the approximation used by PIVO.

BENCHMARKS

I EuRoC MAV data
I Dataset of a micro aerial vehicle with a

mounted stereo camera and IMU and
external ground-truth

I Comparable RMSE error with
state-of-the-art

I Several passes of the same scene
better suited for map building
algorithms

OCCLUSION EXPERIMENT

I Robustness to occlusion compared to
the Google Tango device

I Experiment setup in Figure 2
I A small scene is traversed.
I For some portions of the walk, the

camera is completely occluded
I The odometry system keeps correct

motion and is not confused by the
occlusion

I Note: No map building done

LARGE EXPERIMENT

I City-wide navigation: Figure 1
I Walking through a busy city center,

indoors/outdoors, with partial
occlusions and dynamic objects in the
scene

I Used hardware: Apple iPhone 6
I Path length: ∼600 meters
I Manual alignment with city map shows

the trajectory remains consistent in
scale and orientation

DISCUSSION

I Principled approach for fusing inertial
and visual information

I PIVO shows robustness to occlusion
I Robustness dynamic objects moving in

the scene
I PIVO is comparable with

state-of-the-art algorithms in ideal
scenes

I Improved performance in challenging
conditions
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Figure 1: PIVO tracking on a smartphone (iPhone 6) starting from an office building (1–2), through city streets (3–5), a
shopping mall (6), and underground transportation hub (7–8).

2. Related work

Methods for tracking the pose of a mobile device with
six degrees of freedom can be categorized based on (i) the
input sensor data, or (ii) the type of the approach. Re-
garding the latter aspect the main categories are simultane-
ous localization and mapping (SLAM) approaches, which
aim to build a global map of the environment and utilize
it for loop-closures and relocalization, and pure odometry
approaches, which aim at precise sequential tracking with-
out building a map or storing it in memory. SLAM is par-
ticularly beneficial in cases where the device moves in a
relatively small environment and revisits the mapped areas
multiple times, since the map can be used for removing
the inevitable drift of tracking. However, accurate low-drift
odometry is needed in cases where the device moves long
distances without revisiting mapped areas.

Regarding the types of input data there is plenty of lit-
erature using various combinations of sensors. Monocular
visual SLAM and odometry techniques, which use a sin-
gle video camera, are widely studied [5, 8, 18] but they
have certain inherent limitations which hamper their prac-
tical use. That is, one can not recover the absolute metric
scale of the scene with a monocular camera and the tracking
breaks if the camera is occluded or there are not enough vi-
sual features visible all the time. For example, homogenous
textureless surfaces are quite common in indoor environ-
ments but lack visual features. Moreover, even if the met-
ric scale of the device trajectory would not be necessary in
all applications, monocular visual odometry can not keep a

consistent scale if the camera is not constantly translating—
that is, pure rotations cause problems [12]. Scale drift may
cause artifacts even without pure rotational motion if loop-
closures can not be frequently utilized [33].

Methods that use stereo cameras are able to recover the
metric scale of the motion, and consistent tracking is pos-
sible even if the camera rotates without translating [6, 25].
Still, the lack of visually distinguishable texture and tem-
porary occlusions (e.g. in a crowd) are problem for all ap-
proaches that utilize only cameras. Recently, due to the in-
creasing popularity of depth sensing RGB-D devices (either
utilizing structured light or time-of-flight), also SLAM and
odometry approaches have emerged for them [14, 17, 27].
These devices provide robustness to lack of texture but they
also require unobstructed line of sight, and hence occlusions
may still be a problem. In addition, many of the cameras
have a limited range for depth sensing and do not work out-
doors because they utilize infrared projectors.

Thus, in order to make tracking more robust and prac-
tical for consumer applications on mobile devices both
indoors and outdoors, it has become common to com-
bine video cameras with inertial measurement units (IMUs)
[2, 7, 13, 24, 26, 35]. Examples of hardware platforms that
provide built-in visual-inertial odometry are Google Tango
and Microsoft Hololens devices. However, both of these
devices contain custom hardware components (e.g. a fish-
eye lens camera), which are not common in conventional
smartphones. In addition, there are several research pa-
pers which utilize IMUs with custom stereo camera setups
[9, 11, 20, 37].

Figure 1: PIVO tracking on a smartphone (iPhone 6) starting from an office building (1–2), through city streets
(3–5), a shopping mall (6), and underground transportation hub (7–8). Path length ∼600 meters.


