INTRODUCTION

» Novel visual-inertial odometry method

» Information fusion for the low-cost IMU
sensors (gyroscope and accelerometer)
and the monocular camera in a
smartphone

» Problem: Previous methods
visual-heavy and thus sensitive to the
visual environment

» Novelty: Takes into account all the
cross-terms in the visual updates

» Thus propagating the inter-connected
uncertainties throughout the model

» Robustness against occlusion and
feature-poor environments

» Stronger coupling between the inertial
and visual data
— “Inertial-visual odometry”

INFORMATION FUSION

» The IMU data drives the dynamics
» Complemeted by visual updates

» Formulated as a statistical information
fusion problem

» Non-linear filtering by an extended
Kalman filter (EKF)

» Exact up to the first-order linearizations
in the EKF

IMU PROPAGATION MODEL

» We leverage on recent advances in
Inertial navigation on smartphones [2]
» For each time step I, the state holds
the position pg, velocity vy, orientation
dx, and sensor biases
X, = (Pk. 9k, Vi, b%, s T2 71'(1), 71'(2), . ,71'(”3))
» A trail of past poses V) to be coupled

by the visual updates

» IMU propagation is done with the
mechanization equations

o Pk_1+ Vk_1Alk
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» Double-integrating the accelerations ay
corrected by the gyroscope rotations wy

PIVO: Probabilistic Inertial-Visual Odometry for

Occlusion-Robust Navigation

Arno Solin’

Algorithm 1: Qutline of the PIVO method.

Initialize the state mean and covariance
foreach IMU sample pair (aj, wy) do
Propagate the model with the IMU sample see Sec. 3.2
Perform the EKF prediction step
if new frame is available then
track visual features

foreach feature track do
Jointly triangulate feature using poses in state and

calculate the visual update proposal see Sec. 3.4
if proposal passes check then
Perform the EKF visual update

Update the trail of augmented poses see Sec. 3.3

VISUAL UPDATES

» Features tracked by Good features to
track and a pyramidal Lucas—Kanade
tracker

» Visual update performed per tracked
feature

» The observed data are the pixel
coordinates of the feature trail

» The 3D location of the feature point is
triangulated by Gauss—Newton
minimization of reprojection error

» The feature location couples the
augmented poses in the state

» The entire update procedure
differentiated (including the
Gauss—Newton iteration) for the EKF
update

» This way the 3D position of the feature
IS integrated out in the update

» Outlier rejection by innovation tests
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Figure 2: Test setup for comparing the Tango
device and an iPhone.
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Figure 1: PIVO tracking on a smartphone (iPhone 6) starting from an office building (1-2), through city streets
(3—5), a shopping mall (6), and underground transportation hub (7-8). Path length ~600 meters.

» We perform comparisons of the visual
update model to
(i) brute-force Monte Carlo simulation
(ii) the MSCKF method [3]

» Comparison examples in Figure 3
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Figure 3: A visual feature observed by a trail
of camera poses with associated uncertainties.
The black dots are the ‘true’ distributions for
the visual update model. The red patch shows
shape of the Gaussian approximation used by
the MSCKEF [3] visual update, and blue shows
the shape of the approximation used by PIVO.
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BENCHMARKS

» EuRoC MAV data

» Dataset of a micro aerial vehicle with a
mounted stereo camera and IMU and
external ground-truth

» Comparable RMSE error with
state-of-the-art

» Several passes of the same scene
better suited for map building
algorithms

OCCLUSION EXPERIMENT

» Robustness to occlusion compared to
the Google Tango device

» Experiment setup in Figure 2

» A small scene Is traversed.

» For some portions of the walk, the
camera is completely occluded

» The odometry system keeps correct
motion and is not confused by the
occlusion

» Note: No map building done
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LARGE EXPERIMENT

» City-wide navigation: Figure 1

» Walking through a busy city center,
iIndoors/outdoors, with partial
occlusions and dynamic objects in the
scene

» Used hardware: Apple iPhone 6
» Path length: ~600 meters

» Manual alignment with city map shows
the trajectory remains consistent in
scale and orientation

DISCUSSION

» Principled approach for fusing inertial
and visual information

» PIVO shows robustness to occlusion

» Robustness dynamic objects moving in
the scene

» PIVO is comparable with
state-of-the-art algorithms in ideal
scenes

» Improved performance in challenging
conditions
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